Subsection 14.2.1 Radical Expressions and Rational Exponents
Compare the following calculations:
\begin{align*}
\sqrt{9}\cdot\sqrt{9}\amp=3\cdot3=9\\
9^{\frac{1}{2}}\cdot9^{\frac{1}{2}}\amp=9^{\frac{1}{2}+\frac{1}{2}}=9^1=9
\end{align*}
If we rewrite the above calculations with exponent, we have:
\begin{align*}
(\sqrt{9})^2\amp=9\\
(9^{\frac{1}{2}})^2\amp=9
\end{align*}
Since the square of \(\sqrt{9}\) and the square of \(9^{\frac{1}{2}}\) generates the same number, we conclude that
\begin{equation*}
\sqrt{9}=9^{\frac{1}{2}}
\end{equation*}
We can verify this result by entering \(9\wedge(1/2)\) into a calculator, and the result should be \(3\text{.}\) In general, we have:
\begin{equation*}
\sqrt{x}=x^{\frac{1}{2}}
\end{equation*}
Similarly, we can prove:
\begin{align*}
\sqrt[3]{x}\amp=x^{\frac{1}{3}}\\
\sqrt[4]{x}\amp=x^{\frac{1}{4}}\\
\sqrt[5]{x}\amp=x^{\frac{1}{5}}\\
\ldots\\
\sqrt[n]{x}\amp=x^{\frac{1}{n}}
\end{align*}
With this relationship, we can re-write radical expressions into expressions with rational exponents.
Example 14.2.2
Evaluate \(\sqrt[4]{9}\) with a calculator. Round your answer to two decimal places.
Solution Since \(\sqrt[4]{9}=9^{\frac{1}{4}}\text{,}\) we press the following buttons on a calculator to get the value:
\begin{equation*}
9\wedge(1/4)\approx1.73\text{.}
\end{equation*}
In the next few examples, we need to use another important skill: recognizing the following special numbers:
Special Numbers
Perfect Square Numbers
\(0,1,4,9,16,25,36,49,64,81,100,121,144\)
Perfect Cube Numbers
\(0,1,8,27,64,125\)
Perfect \(4^{th}\)-Power Numbers
\(0,1,16,81\)
Powers of \(2\)
\(2,4,8,16,32,64,128,256,512,1024\)
Table 14.2.3 Special NumbersWhen we see one of these numbers in a problem, we must re-write the number into its prime factors. Most of the time, we will benefit from this conversion. Let's look at the next example.
Example 14.2.4
Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.
\(\sqrt[3]{5}\)
\(\sqrt[4]{4}\)
Solution Solutions:
\(\sqrt[3]{5}=5^{\frac{1}{3}}\)
The second problem is more complicated because \(4\) is a special number:
\begin{align*}
\sqrt[4]{4}\amp=4^{\frac{1}{4}}\\
\amp=(2^2)^{\frac{1}{4}}\\
\amp=2^{2\cdot\frac{1}{4}}\amp\text{because }(a^m)^n=a^{mn}\\
\amp=2^{\frac{1}{2}}
\end{align*}
Let's find a pattern and summarize an important property of radicals:
\begin{align*}
\sqrt[3]{-1}\amp=-1\\
-\sqrt[3]{1}\amp=-1\\
\sqrt[3]{-8}\amp=-2\\
-\sqrt[3]{8}\amp=-2\\
\sqrt[3]{-27}\amp=-3\\
-\sqrt[3]{27}\amp=-3
\end{align*}
In general, we have
\begin{equation*}
\sqrt[3]{-a}=-\sqrt[3]{a}
\end{equation*}
Similarly, we can show
\begin{equation*}
\sqrt[n]{-a}=-\sqrt[n]{a}\text{ where }n\text{ is odd}
\end{equation*}
Since \(\sqrt[n]{x}=x^{\frac{1}{n}}\text{,}\) the same property can be written as
\begin{equation*}
(-a)^{\frac{1}{n}}=-a^{\frac{1}{n}}\text{ where }n\text{ is odd}
\end{equation*}
The next example uses this property.
Example 14.2.5
Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.
\(\sqrt[3]{4}\)
\(\sqrt[3]{-4}\)
Solution
Solution:
\begin{align*}
\sqrt[3]{4}\amp=4^{\frac{1}{3}}\\
\amp=(2^2)^{\frac{1}{3}}\\
\amp=2^{2\cdot\frac{1}{3}}\\
\amp=2^{\frac{2}{3}}
\end{align*}
Solution:
\begin{align*}
\sqrt[3]{-4}\amp=-\sqrt[3]{4}\\
\amp=-4^{\frac{1}{3}}\\
\amp=-(2^2)^{\frac{1}{3}}\\
\amp=-2^{2\cdot\frac{1}{3}}\\
\amp=-2^{\frac{2}{3}}
\end{align*}
The following example uses the property \(x^{-n}=\frac{1}{x^n}\text{.}\)
Example 14.2.6
Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.
\(\frac{1}{\sqrt{x}}\)
\(\frac{1}{\sqrt[3]{25}}\)
Solution
Solution:
\begin{align*}
\frac{1}{\sqrt{x}}\amp=\frac{1}{x^{\frac{1}{2}}}\\
\amp=x^{-\frac{1}{2}}\amp\text{because }x^{-n}=\frac{1}{x^n}
\end{align*}
Solution:
\begin{align*}
\frac{1}{\sqrt[3]{25}}\amp=\frac{1}{25^{\frac{1}{3}}}\\
\amp=\frac{1}{(5^2)^{\frac{1}{3}}}\\
\amp=\frac{1}{5^{2\cdot\frac{1}{3}}}\amp\text{because }(ab)^n=a^nb^n\\
\amp=\frac{1}{5^{\frac{2}{3}}}\\
\amp=5^{-\frac{2}{3}}\amp\text{because }x^{-n}=\frac{1}{x^n}
\end{align*}
The next few examples simplify expressions with fractional exponents. The key is to convert special numbers into prime factors.
Example 14.2.7
Simplify the following expressions if possible.
\(16^{-\frac{3}{4}}\)
\((-32)^{-\frac{1}{5}}\)
Solution
Solution:
\begin{align*}
(16)^{-\frac{3}{2}}\amp=(2^4)^{-\frac{3}{2}}\\
\amp=2^{4(-\frac{3}{2})}\\
\amp=2^{-6}\\
\amp=\frac{1}{2^6}\\
\amp=\frac{1}{64}
\end{align*}
Solution:
\begin{align*}
(-32)^{-\frac{1}{5}}\amp=[(-2)^5]^{-\frac{1}{5}}\\
\amp=(-2)^{5(-\frac{1}{5})}\\
\amp=(-2)^{-1}\\
\amp=\frac{1}{-2}\\
\amp=-\frac{1}{2}
\end{align*}
Sometimes it's easier to simplify radical expressions if we convert radicals to fractional exponents, like in the next example.
Example 14.2.8
Simplify \(\sqrt[3]{64^2}\text{.}\)
Solution
\begin{align*}
\sqrt[3]{64^2}\amp=\sqrt[3]{(2^6)^2}\\
\amp=\sqrt[3]{2^{12}}\\
\amp=(2^{12})^{\frac{1}{3}}\\
\amp=2^{12\cdot\frac{1}{3}}\\
\amp=2^4\\
\amp=16
\end{align*}
It's worth reviewing a property and a common mistake:
\begin{align*}
\sqrt{x+y}\amp\ne\sqrt{x}+\sqrt{y}\\
\sqrt{xy}\amp=\sqrt{x}\sqrt{y}
\end{align*}
The same is also true for radicals of other degrees:
\begin{align*}
\sqrt[n]{x+y}\amp\ne\sqrt[n]{x}+\sqrt[n]{y}\\
\sqrt[n]{xy}\amp=\sqrt[n]{x}\sqrt[n]{y}
\end{align*}
Let's look at the next example.
Example 14.2.9
Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.
\(\sqrt{x^2+4}\)
\(\sqrt{x^2-4}\)
\(\sqrt{(x+4)^2}\text{,}\) where \(x\) is positive
\(\sqrt{4x^2}\text{,}\) where \(x\) is positive
Solution
Solution:
\begin{equation*}
\sqrt{x^2+4}=(x^2+4)^{\frac{1}{2}}
\end{equation*}
Solution:
\begin{equation*}
\sqrt{x^2-4}=(x^2-4)^{\frac{1}{2}}
\end{equation*}
Solution:
\begin{equation*}
\sqrt{(x+4)^2}=x+4\quad\text{because square and square root cancelled}
\end{equation*}
Solution:
\begin{equation*}
\sqrt{4x^2}=\sqrt{4}\cdot\sqrt{x^2}=2x
\end{equation*}