Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{๐ŸŽ}} \newcommand{\banana}{\text{๐ŸŒ}} \newcommand{\pear}{\text{๐Ÿ}} \newcommand{\cat}{\text{๐Ÿฑ}} \newcommand{\dog}{\text{๐Ÿถ}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section14.2Radical Expressions and Rational Exponents

To calculate the cube root of a number, say \(8\text{,}\) we can press the following buttons of a calculator:

\begin{equation*} 8\wedge(1/3) \end{equation*}

This implies

\begin{equation*} \sqrt[3]{8}=8^{\frac{1}{3}} \end{equation*}

In this section, we will learn why this is true.

Figure14.2.1Alternative Video Lesson

Subsection14.2.1Radical Expressions and Rational Exponents

Compare the following calculations:

\begin{align*} \sqrt{9}\cdot\sqrt{9}\amp=3\cdot3=9\\ 9^{\frac{1}{2}}\cdot9^{\frac{1}{2}}\amp=9^{\frac{1}{2}+\frac{1}{2}}=9^1=9 \end{align*}

If we rewrite the above calculations with exponent, we have:

\begin{align*} (\sqrt{9})^2\amp=9\\ (9^{\frac{1}{2}})^2\amp=9 \end{align*}

Since the square of \(\sqrt{9}\) and the square of \(9^{\frac{1}{2}}\) generates the same number, we conclude that

\begin{equation*} \sqrt{9}=9^{\frac{1}{2}} \end{equation*}

We can verify this result by entering \(9\wedge(1/2)\) into a calculator, and the result should be \(3\text{.}\) In general, we have:

\begin{equation*} \sqrt{x}=x^{\frac{1}{2}} \end{equation*}

Similarly, we can prove:

\begin{align*} \sqrt[3]{x}\amp=x^{\frac{1}{3}}\\ \sqrt[4]{x}\amp=x^{\frac{1}{4}}\\ \sqrt[5]{x}\amp=x^{\frac{1}{5}}\\ \ldots\\ \sqrt[n]{x}\amp=x^{\frac{1}{n}} \end{align*}

With this relationship, we can re-write radical expressions into expressions with rational exponents.

Example14.2.2

Evaluate \(\sqrt[4]{9}\) with a calculator. Round your answer to two decimal places.

Solution

Since \(\sqrt[4]{9}=9^{\frac{1}{4}}\text{,}\) we press the following buttons on a calculator to get the value:

\begin{equation*} 9\wedge(1/4)\approx1.73\text{.} \end{equation*}

In the next few examples, we need to use another important skill: recognizing the following special numbers:

Special Numbers
Perfect Square Numbers \(0,1,4,9,16,25,36,49,64,81,100,121,144\)
Perfect Cube Numbers \(0,1,8,27,64,125\)
Perfect \(4^{th}\)-Power Numbers \(0,1,16,81\)
Powers of \(2\) \(2,4,8,16,32,64,128,256,512,1024\)
Table14.2.3Special Numbers

When we see one of these numbers in a problem, we must re-write the number into its prime factors. Most of the time, we will benefit from this conversion. Let's look at the next example.

Example14.2.4

Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.

  1. \(\sqrt[3]{5}\)

  2. \(\sqrt[4]{4}\)

Solution

Solutions:

  1. \(\sqrt[3]{5}=5^{\frac{1}{3}}\)

  2. The second problem is more complicated because \(4\) is a special number:

    \begin{align*} \sqrt[4]{4}\amp=4^{\frac{1}{4}}\\ \amp=(2^2)^{\frac{1}{4}}\\ \amp=2^{2\cdot\frac{1}{4}}\amp\text{because }(a^m)^n=a^{mn}\\ \amp=2^{\frac{1}{2}} \end{align*}

Let's find a pattern and summarize an important property of radicals:

\begin{align*} \sqrt[3]{-1}\amp=-1\\ -\sqrt[3]{1}\amp=-1\\ \sqrt[3]{-8}\amp=-2\\ -\sqrt[3]{8}\amp=-2\\ \sqrt[3]{-27}\amp=-3\\ -\sqrt[3]{27}\amp=-3 \end{align*}

In general, we have

\begin{equation*} \sqrt[3]{-a}=-\sqrt[3]{a} \end{equation*}

Similarly, we can show

\begin{equation*} \sqrt[n]{-a}=-\sqrt[n]{a}\text{ where }n\text{ is odd} \end{equation*}

Since \(\sqrt[n]{x}=x^{\frac{1}{n}}\text{,}\) the same property can be written as

\begin{equation*} (-a)^{\frac{1}{n}}=-a^{\frac{1}{n}}\text{ where }n\text{ is odd} \end{equation*}

The next example uses this property.

Example14.2.5

Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.

  1. \(\sqrt[3]{4}\)

  2. \(\sqrt[3]{-4}\)

Solution

  1. Solution:

    \begin{align*} \sqrt[3]{4}\amp=4^{\frac{1}{3}}\\ \amp=(2^2)^{\frac{1}{3}}\\ \amp=2^{2\cdot\frac{1}{3}}\\ \amp=2^{\frac{2}{3}} \end{align*}
  2. Solution:

    \begin{align*} \sqrt[3]{-4}\amp=-\sqrt[3]{4}\\ \amp=-4^{\frac{1}{3}}\\ \amp=-(2^2)^{\frac{1}{3}}\\ \amp=-2^{2\cdot\frac{1}{3}}\\ \amp=-2^{\frac{2}{3}} \end{align*}

The following example uses the property \(x^{-n}=\frac{1}{x^n}\text{.}\)

Example14.2.6

Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.

  1. \(\frac{1}{\sqrt{x}}\)

  2. \(\frac{1}{\sqrt[3]{25}}\)

Solution

  1. Solution:

    \begin{align*} \frac{1}{\sqrt{x}}\amp=\frac{1}{x^{\frac{1}{2}}}\\ \amp=x^{-\frac{1}{2}}\amp\text{because }x^{-n}=\frac{1}{x^n} \end{align*}
  2. Solution:

    \begin{align*} \frac{1}{\sqrt[3]{25}}\amp=\frac{1}{25^{\frac{1}{3}}}\\ \amp=\frac{1}{(5^2)^{\frac{1}{3}}}\\ \amp=\frac{1}{5^{2\cdot\frac{1}{3}}}\amp\text{because }(ab)^n=a^nb^n\\ \amp=\frac{1}{5^{\frac{2}{3}}}\\ \amp=5^{-\frac{2}{3}}\amp\text{because }x^{-n}=\frac{1}{x^n} \end{align*}

The next few examples simplify expressions with fractional exponents. The key is to convert special numbers into prime factors.

Example14.2.7

Simplify the following expressions if possible.

  1. \(16^{-\frac{3}{4}}\)

  2. \((-32)^{-\frac{1}{5}}\)

Solution

  1. Solution:

    \begin{align*} (16)^{-\frac{3}{2}}\amp=(2^4)^{-\frac{3}{2}}\\ \amp=2^{4(-\frac{3}{2})}\\ \amp=2^{-6}\\ \amp=\frac{1}{2^6}\\ \amp=\frac{1}{64} \end{align*}
  2. Solution:

    \begin{align*} (-32)^{-\frac{1}{5}}\amp=[(-2)^5]^{-\frac{1}{5}}\\ \amp=(-2)^{5(-\frac{1}{5})}\\ \amp=(-2)^{-1}\\ \amp=\frac{1}{-2}\\ \amp=-\frac{1}{2} \end{align*}

Sometimes it's easier to simplify radical expressions if we convert radicals to fractional exponents, like in the next example.

Example14.2.8

Simplify \(\sqrt[3]{64^2}\text{.}\)

Solution

\begin{align*} \sqrt[3]{64^2}\amp=\sqrt[3]{(2^6)^2}\\ \amp=\sqrt[3]{2^{12}}\\ \amp=(2^{12})^{\frac{1}{3}}\\ \amp=2^{12\cdot\frac{1}{3}}\\ \amp=2^4\\ \amp=16 \end{align*}

It's worth reviewing a property and a common mistake:

\begin{align*} \sqrt{x+y}\amp\ne\sqrt{x}+\sqrt{y}\\ \sqrt{xy}\amp=\sqrt{x}\sqrt{y} \end{align*}

The same is also true for radicals of other degrees:

\begin{align*} \sqrt[n]{x+y}\amp\ne\sqrt[n]{x}+\sqrt[n]{y}\\ \sqrt[n]{xy}\amp=\sqrt[n]{x}\sqrt[n]{y} \end{align*}

Let's look at the next example.

Example14.2.9

Convert the following radical expressions into expressions with rational exponents, and simplify them if possible.

  1. \(\sqrt{x^2+4}\)

  2. \(\sqrt{x^2-4}\)

  3. \(\sqrt{(x+4)^2}\text{,}\) where \(x\) is positive

  4. \(\sqrt{4x^2}\text{,}\) where \(x\) is positive

Solution

  1. Solution:

    \begin{equation*} \sqrt{x^2+4}=(x^2+4)^{\frac{1}{2}} \end{equation*}
  2. Solution:

    \begin{equation*} \sqrt{x^2-4}=(x^2-4)^{\frac{1}{2}} \end{equation*}
  3. Solution:

    \begin{equation*} \sqrt{(x+4)^2}=x+4\quad\text{because square and square root cancelled} \end{equation*}
  4. Solution:

    \begin{equation*} \sqrt{4x^2}=\sqrt{4}\cdot\sqrt{x^2}=2x \end{equation*}

Subsection14.2.2Exercises

Fractional Exponents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Subsection14.2.3Simplifying Expressions with Rational Exponents

With the property \(\sqrt[n]{x}=x^{\frac{1}{n}}\text{,}\) we can simplify radical expressions with exponent properties we learned in Sectionย 6.1. Let's look at a few examples.

Example14.2.10

Use rational exponent properties to simplify \(\sqrt{y}\cdot\sqrt[4]{y}\text{.}\)

Solution

\begin{align*} \sqrt{y}\cdot\sqrt[4]{y}\amp=y^{\frac{1}{2}}\cdot y^{\frac{1}{4}}\\ \amp=y^{\frac{1}{2}+\frac{1}{4}}\amp\text{because }x^m\cdot x^n=x^{m+n}\\ \amp=y^{\frac{2}{4}+\frac{1}{4}}\\ \amp=y^{\frac{3}{4}} \end{align*}
Example14.2.11

Use rational exponent properties to simplify \(\frac{\sqrt{z}}{\sqrt[3]{z}}\text{.}\)

Solution

\begin{align*} \frac{\sqrt{z}}{\sqrt[3]{z}}\amp=\frac{z^{\frac{1}{2}}}{z^{\frac{1}{3}}}\\ \amp=z^{\frac{1}{2}-\frac{1}{3}}\amp\text{because }\frac{x^m}{x^n}=x^{m-n}\\ \amp=z^{\frac{3}{6}-\frac{2}{6}}\\ \amp=z^{\frac{1}{6}} \end{align*}
Example14.2.12

Use rational exponent properties to simplify \(\sqrt[3]{8p^2}\text{.}\)

Solution

\begin{align*} \sqrt[3]{8p^2}\amp=(8p^2)^{\frac{1}{3}}\\ \amp=(2^3p^2)^{\frac{1}{3}}\\ \amp=(2^3)^{\frac{1}{3}}(p^2)^{\frac{1}{3}}\amp\text{because }(xy)^m=x^my^n\\ \amp=2^{3\cdot\frac{1}{3}}p^{2\cdot\frac{1}{3}}\\ \amp=2p^{\frac{2}{3}} \end{align*}
Example14.2.13

Use rational exponent properties to simplify \(\sqrt{\sqrt[4]{q}}\text{.}\)

Solution

\begin{align*} \sqrt{\sqrt[4]{q}}\amp=\sqrt{q^{\frac{1}{4}}}\\ \amp=(q^{\frac{1}{4}})^{\frac{1}{2}}\\ \amp=q^{\frac{1}{4}\cdot\frac{1}{2}}\amp\text{because }(x^m)^n=x^{mn}\\ \amp=q^{\frac{1}{8}} \end{align*}
Example14.2.14

Use rational exponent properties to simplify \(\sqrt[3]{\frac{r^6}{27}}\text{.}\)

Solution

\begin{align*} \sqrt[3]{\frac{r^6}{27}}\amp=(\frac{r^6}{3^3})^{\frac{1}{3}}\\ \amp=\frac{(r^6)^{\frac{1}{3}}}{(3^3)^{\frac{1}{3}}}\amp\text{because }(\frac{x}{y})^m=\frac{x^m}{y^m}\\ \amp=\frac{r^{6\cdot\frac{1}{3}}}{3^{3\cdot\frac{1}{3}}}\amp\text{because }(x^m)^n=x^{mn}\\ \amp=\frac{r^2}{3} \end{align*}
Example14.2.15

Use rational exponent properties to simplify \((\frac{25}{s^4})^{-\frac{1}{2}}\text{.}\)

Solution

\begin{align*} (\frac{25}{s^4})^{-\frac{1}{2}}\amp=(\frac{5^2}{s^4})^{-\frac{1}{2}}\\ \amp=\frac{(5^2)^{-\frac{1}{2}}}{(s^4)^{-\frac{1}{2}}}\amp\text{because }(\frac{x}{y})^m=\frac{x^m}{y^m}\\ \amp=\frac{5^{2(-\frac{1}{2})}}{s^{4(-\frac{1}{2})}}\amp\text{because }(x^m)^n=x^{mn}\\ \amp=\frac{5^{-1}}{s^{-2}}\\ \amp=\frac{s^2}{5^{1}}\amp\text{because }x^{-n}=\frac{1}{x^n}\\ \amp=\frac{s^2}{5} \end{align*}

Subsection14.2.4Exercises

Simplifying Expressions with Rational Exponents

1
2
3
4
5
6
7
8
9
10
11
12
13