Section 14.4 More on Rationalizing the Denominator
ΒΆ In <<Unresolved xref, reference "section-rationalizing-denominator"; check spelling or use "provisional" attribute>> , we learned how to rationalize the denominator in simple expressions like \(\frac{1}{\sqrt{2}}\text{.}\) In this section, we will extend the concept and handle more complicated expressions.
VIDEO Figure 14.4.1 Alternative Video Lesson
Subsection 14.4.1 Rationalizing the Denominator with Radicals of Higher Degrees
To remove radicals from the denominator of \(\frac{1}{\sqrt{2}}\text{,}\) we multiply the numerator and denominator by \(\sqrt{2}\text{,}\) and we have:
\begin{align*}
\frac{1}{\sqrt{2}}\amp=\frac{1\multiplyright{\sqrt{2}}}{\sqrt{2}\multiplyright{\sqrt{2}}}\\
\amp=\frac{\sqrt{2}}{2}
\end{align*}
We used the property:
\begin{equation*}
\sqrt{x}\cdot\sqrt{x}=x,\text{ where }x\text{ is positive}
\end{equation*}
In this section, we assume all variables are positive, so we don't need to use the absolute value symbols.
We can extend this concept and use the following properties to rationalize denominators with radicals of other degrees:
\begin{align*}
\sqrt[3]{x^3}\amp=x\\
\sqrt[4]{x^4}\amp=x\\
\amp\ldots\\
\sqrt[n]{x^n}\amp=x
\end{align*}
Let's look at a few examples.
Example 14.4.2
Rationalize the denominator in \(\frac{1}{\sqrt[3]{2}}\text{.}\)
Solution To remove the radical \(\sqrt[3]{2}\text{,}\) we will use the property \(\sqrt[3]{2^3}=2\text{.}\) This implies we will multiply the numerator and denominator by \(\sqrt[3]{2^2}\text{:}\)
\begin{align*}
\frac{1}{\sqrt[3]{2}}\amp=\frac{1\multiplyright{\sqrt[3]{2^2}}}{\sqrt[3]{2}\multiplyright{\sqrt[3]{2^2}}}\\
\amp=\frac{\sqrt[3]{2^2}}{\sqrt[3]{2^3}}\\
\amp=\frac{\sqrt[3]{4}}{2}
\end{align*}
Example 14.4.3
Rationalize the denominator in \(\frac{\sqrt{3}}{3\sqrt{2x}}\text{.}\) Assume all variables are positive.
Solution
\begin{align*}
\frac{\sqrt{3}}{3\sqrt{2x}}\amp=\frac{\sqrt{3}\multiplyright{\sqrt{2x}}}{3\sqrt{2x}\multiplyright{\sqrt{2x}}}\\
\amp=\frac{\sqrt{3\cdot2x}}{3\cdot2x}\\
\amp=\frac{\sqrt{6x}}{6x}
\end{align*}
In the example above, to remove the radical \(\sqrt{2x}\text{,}\) we did \(\sqrt{2x}\cdot\sqrt{2x}=2x\text{.}\) In the next example, to remove the radical \(\sqrt[3]{2x^2}\text{,}\) we do \(\sqrt[3]{2x}\cdot\sqrt[3]{2^2x^2}=2x\text{.}\)
Example 14.4.4
Rationalize the denominator in \(\frac{\sqrt[3]{y}}{3\sqrt[3]{2x}}\text{.}\) Assume all variables are positive.
Solution
\begin{align*}
\frac{\sqrt[3]{y}}{3\sqrt[3]{2x}}\amp=\frac{\sqrt[3]{y}\multiplyright{\sqrt[3]{2^2x^2}}}{3\sqrt[3]{2x}\multiplyright{\sqrt[3]{2^2x^2}}}\\
\amp=\frac{\sqrt[3]{4x^2y}}{3\cdot2x}\\
\amp=\frac{\sqrt[3]{4x^2y}}{6x}
\end{align*}
When a radicand is a fraction, we should break it into two radicals, and then rationalize the denominator, like in the next two examples.
Example 14.4.5
Rationalize the denominator in \(\sqrt[3]{\frac{2}{3}}\text{.}\)
Solution
\begin{align*}
\sqrt[3]{\frac{2}{3}}\amp=\frac{\sqrt[3]{2}}{\sqrt[3]{3}}\\
\amp=\frac{\sqrt[3]{2}\multiplyright{\sqrt{3^2}}}{\sqrt[3]{3}\multiplyright{\sqrt{3^2}}}\\
\amp=\frac{\sqrt[3]{2\cdot3^2}}{3}\\
\amp=\frac{\sqrt[3]{18}}{3}
\end{align*}
Example 14.4.6
Rationalize the denominator in \(\sqrt[3]{\frac{r}{s^2}}\text{.}\) Assume all variables are positive.
Solution
\begin{align*}
\sqrt[3]{\frac{r}{s^2}}\amp=\frac{\sqrt[3]{r}}{\sqrt[3]{s^2}}\\
\amp=\frac{\sqrt[3]{r}\multiplyright{\sqrt[3]{s}}}{\sqrt[3]{s^2}\multiplyright{\sqrt[3]{s}}}\\
\amp=\frac{\sqrt[3]{rs}}{s}
\end{align*}
Before we rationalize the denominator, we should simplify the radical if possible, like in the next example.
Example 14.4.7
Rationalize the denominator in \(\frac{1}{\sqrt[3]{54x^5}}\text{.}\) Assume all variables are positive.
Solution
\begin{align*}
\frac{1}{\sqrt[3]{54x^5}}\amp=\frac{1}{\sqrt[3]{2\cdot3^3x^3x^2}}\\
\amp=\frac{1}{3x\cdot\sqrt[3]{2x^2}}\\
\amp=\frac{1\multiplyright{\sqrt[3]{2^2x}}}{3x\cdot\sqrt[3]{2x^2}\multiplyright{\sqrt[3]{2^2x}}}\\
\amp=\frac{\sqrt[3]{2^2x}}{3x\cdot2x}\\
\amp=\frac{\sqrt[3]{4x}}{6x^2}
\end{align*}
Subsection 14.4.2 Exercises
Rationalizing the Denominator
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Subsection 14.4.3 Rationalize Denominator with Difference of Squares Formula
How can be remove the radical in the denominator of \(\frac{1}{\sqrt{2}+1}\text{?}\) Let's try by multiplying the numerator and denominator by \(\sqrt{2}\text{:}\)
\begin{align*}
\frac{1}{\sqrt{2}+1}\amp=\frac{1\multiplyright{\sqrt{2}}}{(\sqrt{2}+1)\multiplyright{\sqrt{2}}}\\
\amp=\frac{\sqrt{2}}{\sqrt{2}\cdot\sqrt{2}+1\cdot\sqrt{2}}\\
\amp=\frac{\sqrt{2}}{2+\sqrt{2}}
\end{align*}
We removed one radical in the denominator, but created another. We need to find another method, using the Difference of Squares formula:
\begin{equation*}
(a+b)(a-b)=a^2-b^2
\end{equation*}
Those two squares in \(a^2-b^2\) will remove square roots. To remove the radical in \(\sqrt{2}+1\) with the Difference of Squares formula, we will multiply it with \(\sqrt{2}-1\text{,}\) and we have:
\begin{align*}
(\sqrt{2}+1)(\sqrt{2}-1)\amp=(\sqrt{2})^2-(1)^2\\
\amp=2-1\\
\amp=1
\end{align*}
To remove the radical in the denominator of \(\frac{1}{\sqrt{2}+1}\text{,}\) we multiply the numerator and denominator by \(\sqrt{2}-1\text{:}\)
\begin{align*}
\frac{1}{\sqrt{2}+1}\amp=\frac{1\multiplyright{(\sqrt{2}-1)}}{(\sqrt{2}+1)\multiplyright{(\sqrt{2}-1)}}\\
\amp=\frac{\sqrt{2}-1}{(\sqrt{2})^2-(1)^2}\\
\amp=\frac{\sqrt{2}-1}{2-1}\\
\amp=\frac{\sqrt{2}-1}{1}\\
\amp=\sqrt{2}-1
\end{align*}
Let's look at a few more examples.
Example 14.4.8
Rationalize the denominator in \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\text{.}\)
Solution To remove radicals in \(\sqrt{5}+\sqrt{3}\) with the Difference of Squares formula, we multiply it with \(\sqrt{5}-\sqrt{3}\text{.}\) The solution is:
\begin{align*}
\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\amp=\frac{(\sqrt{5}-\sqrt{3})\multiplyright{(\sqrt{5}-\sqrt{3})}}{(\sqrt{5}+\sqrt{3})\multiplyright{(\sqrt{5}-\sqrt{3})}}\\
\amp=\frac{\sqrt{5}\cdot\sqrt{5}-\sqrt{5}\cdot\sqrt{3}-\sqrt{3}\cdot\sqrt{5}+(-\sqrt{3})(-\sqrt{3})}{(\sqrt{5})^2-(\sqrt{3})^2}\\
\amp=\frac{5-\sqrt{15}-\sqrt{15}+3}{5-3}\\
\amp=\frac{8-2\sqrt{15}}{2}\\
\amp=\frac{2(4-\sqrt{15})}{2}\\
\amp=4-\sqrt{15}
\end{align*}
Example 14.4.9
Rationalize the denominator in \(\frac{\sqrt{3}}{3-2\sqrt{3}}\text{.}\)
Solution To remove the radical in \(3-2\sqrt{3}\) with the Difference of Squares formula, we multiply it with \(3+2\sqrt{3}\text{.}\) The solution is:
\begin{align*}
\frac{\sqrt{3}}{3-2\sqrt{3}}\amp=\frac{\sqrt{3}\multiplyright{(3+2\sqrt{3})}}{(3-2\sqrt{3})\multiplyright{(3+2\sqrt{3})}}\\
\amp=\frac{3\sqrt{3}+2\sqrt{3}\cdot\sqrt{3}}{(3)^2-(2\sqrt{3})^2}\\
\amp=\frac{3\sqrt{3}+2\cdot3}{9-2^2(\sqrt{3})^2}\\
\amp=\frac{3\sqrt{3}+6}{9-4(3)}\\
\amp=\frac{3(\sqrt{3}+2)}{9-12}\\
\amp=\frac{3(\sqrt{3}+2)}{-3}\\
\amp=\frac{\sqrt{3}+2}{-1}\\
\amp=-\sqrt{3}-2
\end{align*}
Example 14.4.10
Rationalize the denominator in \(\frac{\sqrt{m}+\sqrt{n}}{\sqrt{m}-\sqrt{n}}\text{.}\) Assume all variables are positive.
Solution To remove radicals in \(\sqrt{m}-\sqrt{n}\) with the Difference of Squares formula, we multiply it with \(\sqrt{m}+\sqrt{n}\text{.}\) The solution is:
\begin{align*}
\frac{\sqrt{m}+\sqrt{n}}{\sqrt{m}-\sqrt{n}}\amp=\frac{(\sqrt{m}+\sqrt{n})\multiplyright{(\sqrt{m}+\sqrt{n})}}{(\sqrt{m}-\sqrt{n})\multiplyright{(\sqrt{m}+\sqrt{n})}}\\
\amp=\frac{\sqrt{m}\cdot\sqrt{m}+\sqrt{m}\cdot\sqrt{n}+\sqrt{n}\cdot\sqrt{m}+\sqrt{n}\cdot\sqrt{n}}{(\sqrt{m})^2-(\sqrt{n})^2}\\
\amp=\frac{m+\sqrt{mn}+\sqrt{mn}+n}{m-n}\\
\amp=\frac{m+2\sqrt{mn}+n}{m-n}
\end{align*}
Subsection 14.4.4 Exercises
Rationalizing the Denominator by Difference of Squares Formula