Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐢}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section12.4Complex Number Operations

Complex numbers are used in many math, science and engineering applications. In this section, we will learn the basics of complex number operations.

Figure12.4.1Alternative Video Lesson

Subsection12.4.1Adding, Subtracting and Multiplying Complex Numbers

In this subsection, we will learn how to add, subtract and multiply complex numbers.

Definition12.4.2Complex Number

A complex number is a number that can be expressed in the form \(a + bi\text{,}\) where \(a\) and \(b\) are real numbers and \(i\) is the imaginary unit, satisfying the equation \(i^2 = -1\text{.}\) In this expression, \(a\) is the real part and \(b\) is the imaginary part of the complex number. You can read more at Wikipedia.

When we add or subtract two complex numbers, we combine and real parts and imaginary parts, just like combining like terms. Here are some examples

Example12.4.3

Do addition: \((1-2i)+(3+4i)\text{.}\)

Solution

\begin{align*} (1-2i)+(3+4i)\amp=1+3-2i+4i\\ \amp=4+2i \end{align*}
Example12.4.4

Do subtraction: \((1-2i)-(3-2i)\text{.}\)

Solution

\begin{align*} (1-2i)-(3-2i)\amp=1-2i-3+2i\\ \amp=-2 \end{align*}

When we multiply complex numbers, be careful that \(i^2=-1\text{.}\) There is an interesting pattern on different exponents of \(i\text{.}\) Let's look at the first four:

\begin{align*} i^1\amp=i\\ i^2\amp=-1\\ i^3\amp=i^2\cdot i=(-1)\cdot i=-i\\ i^4\amp=i^2\cdot i^2=(-1)(-1)=1 \end{align*}

When we calculate higher exponents, we can use \(i^4=1\) and those four products above to simplify our calculations:

\begin{align*} i^5\amp=i^4\cdot i=(1)\cdot i=i\\ i^6\amp=i^4\cdot i^2=(1)\cdot(-1)=-1\\ i^7\amp=i^4\cdot i^3=(1)\cdot(-i)=-i\\ i^8\amp=i^4\cdot i^4=(1)\cdot(1)=1\\ i^9\amp=i^4\cdot i^4 \cdot i=(1)(1)(i)=i\\ \ldots \end{align*}

We will organize the results and find a pattern:

\(i^1=i\) \(i^2=-1\) \(i^3=-i\) \(i^4=1\)
\(i^5=i\) \(i^6=-1\) \(i^7=-i\) \(i^8=1\)
\(i^9=i\) \(i^{10}=-1\) \(i^{11}=-i\) \(i^{12}=1\)

Based on the pattern, we can easily calculate the value of \(i^n\text{,}\) as in the next example.

Example12.4.6

Calculate \(i^{541}\) and \(i^{542}\text{.}\)

Solution

According to the pattern we found above, values of \(i^n\) cycle through \(i, 1, -i, 1\text{.}\) To find which one is the value of \(i^{541}\text{,}\) we do a division:

\begin{equation*} 541\div4=135R1 \end{equation*}

Since the remainder is \(1\text{,}\) \(i^{541}\) would line up with \(i^1\text{.}\) This implies \(i^{541}=i\text{.}\)

Similarly, since \(542\div4=135R2\text{,}\) \(i^{542}\) would line up with \(i^2\text{.}\) This implies \(i^{542}=-1\text{.}\)

Let's look at a few examples on multiplying complex numbers.

Example12.4.7

Do multiplication: \(2i(3-2i)\text{.}\)

Solution

\begin{align*} 2i(3-2i)\amp=2i\cdot3-2i\cdot2i\\ \amp=6i-4i^2\\ \amp=6i-4(-1)\\ \amp=6i+4\\ \amp=4+6i \end{align*}

Note that we always write a complex number in the format of \(a+bi\text{.}\)

Example12.4.8

Do multiplication: \((1+2i)(3-4i)\text{.}\)

Solution

We will use the distributive property to multiply those two binomials.

\begin{align*} (1+2i)(3-4i)\amp=3(1+2i)-4i(1+2i)\\ \amp=3+6i-4i-8i^2\\ \amp=3+6i-4i-8(-1)\\ \amp=3+2i+8\\ \amp=11+2i \end{align*}
Example12.4.9

Expand \((3-4i)^2\text{.}\)

Solution

We will use the FOIL method to expand this perfect square.

<<SVG image is unavailable, or your browser cannot render it>>

Figure12.4.10Using FOIL Method to expand \((3-4i)^2\)

\begin{align*} (3-4i)^2\amp=(3-4i)(3-4i)\\ \amp=9-12i-12i+16i^2\\ \amp=9-24i+16(-1)\\ \amp=9-24i-16\\ \amp=-7-24i \end{align*}
Example12.4.11

Multiply \((3+4i)(3-4i)\text{.}\)

Solution

We will use the Generic Rectangle Method to multiply those two binomials.

<<SVG image is unavailable, or your browser cannot render it>>

Figure12.4.12Using Generic Rectangle Method to multiply \((3+4i)(3-4i)\)

\begin{align*} (3+4i)(3-4i)\amp=9+12i-12i-16i^2\\ \amp=9-16(-1)\\ \amp=9+16\\ \amp=25 \end{align*}

It is critical that we can efficiently use the Difference of Squares Formula

\begin{equation*} (a+b)(a-b)=a^2-b^2 \end{equation*}

In the last example, it would be easier if we use the formula to multiply \((3+4i)(3-4i)\text{:}\)

\begin{align*} (3+4i)(3-4i)\amp=(3)^2-(4i)^2\\ \amp=9-16i^2\\ \amp=9-16(-1)\\ \amp=9+16\\ \amp=25 \end{align*}

Subsection12.4.2Exercises

Adding, Subtracting and Multiplying Complex Numbers

1
2
3
4
5
6
7
8
9
10
11
12

Subsection12.4.3Dividing Complex Numbers

When \(i\) is in the denominator, we must remove it like when we rationalize the denominator. We use the property \(\sqrt{x}\cdot\sqrt{x}=x\) when we rationalize the denominator, while we use the property \(i\cdot i=-1\) when we divide complex numbers. Let's compare these two problems \(\frac{2}{\sqrt{2}}\) and \(\frac{2}{i}\text{:}\)

\begin{align*} \frac{2}{\sqrt{2}}\amp=\frac{2\multiplyright{\sqrt{2}}}{\sqrt{2}\multiplyright{\sqrt{2}}}\\ \amp=\frac{2\sqrt{2}}{2}\\ \amp=\sqrt{2} \end{align*}

\begin{align*} \frac{2}{i}\amp=\frac{2\multiplyright{i}}{i\multiplyright{i}}\\ \amp=\frac{2i}{-1}\\ \amp=-2i \end{align*}

When the denominator is \(a+bi\text{,}\) like \(\frac{1}{4+3i}\text{,}\) we need to use the Difference of Squares Formula to remove \(i\) from the denominator, just like when we rationalize the denominator for \(\frac{1}{4+3\sqrt{2}}\text{.}\) Let's compare those two problems.

To use the Difference of Squares Formula, we multiply \(4+3\sqrt{2}\) with \(4-3\sqrt{2}\text{,}\) and we have:

\begin{align*} (4+3\sqrt{2})(4-3\sqrt{2})\amp=(4)^2-(3\sqrt{2})^2\\ \amp=16-(9\cdot2)\\ \amp=16-18\\ \amp=-2 \end{align*}

The solution is:

\begin{align*} \frac{1}{4+3\sqrt{2}}\amp=\frac{1\multiplyright{(4-3\sqrt{2})}}{(4+3\sqrt{2})\multiplyright{(4-3\sqrt{2})}}\\ \amp=\frac{4-3\sqrt{2}}{-2}\\ \amp=-\frac{4-3\sqrt{2}}{2} \end{align*}

To use the Difference of Squares Formula, we multiply \(4+3i\) with \(4-3i\text{,}\) and we have:

\begin{align*} (4+3i)(4-3i)\amp=(4)^2-(3i)^2\\ \amp=16-(9\cdot i^2)\\ \amp=16-9(-1)\\ \amp=16+9\\ \amp=25 \end{align*}

The solution is:

\begin{align*} \frac{1}{4+3i}\amp=\frac{1\multiplyright{(4-3i)}}{(4+3i)\multiplyright{(4-3i)}}\\ \amp=\frac{4-3i}{25}\\ \amp=\frac{4}{25}-\frac{3}{25}i \end{align*}

Note that we always write a complex number in the format of \(a+bi\text{.}\)

Let's look at a more complicated example.

Example12.4.13

Do division in \(\frac{1+2i}{2-4i}\text{.}\)

Solution

To remove \(i\) in denominator, we multiply the numerator and denominator by \(2+4i\text{:}\)

\begin{align*} \frac{1+2i}{2-4i}\amp=\frac{(1+2i)\multiplyright[]{(2+4i)}}{(2-4i)\multiplyright[]{(2+4i)}}\\ \amp=\frac{1(2+4i)+2i(2+4i)}{(2)^2-(4i)^2}\\ \amp=\frac{2+4i+4i+8i^2}{4-16i^2}\\ \amp=\frac{2+8i+8(-1)}{4-16(-1)}\\ \amp=\frac{-6+8i}{20}\\ \amp=\frac{-6}{20}+\frac{8i}{20}\\ \amp=-\frac{3}{10}+\frac{2}{5}i \end{align*}

Subsection12.4.4Exercises

Dividing Complex Numbers

1
2
3
4
5