Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐢}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section13.4Complex Fractions

In this section, we will learn how to simplify complex fractions, which have fractions in the numerator and/or denominator of another fraction.

Figure13.4.1Alternative Video Lesson

Subsection13.4.1Simplifying Complex Fractions

A complex fraction has fractions in its numerator and/or denominator, like

\begin{equation*} \frac{\frac{1}{2}}{3} \end{equation*}

We need to remove fractions from the numerator and denominator. Here is the normal method to simplify this problem:

\begin{align*} \frac{\frac{1}{2}}{3}\amp=\frac{1}{2}\div3\\ \amp=\frac{1}{2}\div\frac{3}{1}\\ \amp=\frac{1}{2}\cdot\frac{1}{3}\\ \amp=\frac{1}{6} \end{align*}

We will learn an easier method. In a fraction, we multiply the numerator and denominator by the same number, and the fraction's value doesn't change. For example:

\begin{align*} \frac{1}{2}\amp=\frac{1\multiplyright{2}}{2\multiplyright{2}}=\frac{2}{4}\\ \frac{1}{2}\amp=\frac{1\multiplyright{3}}{2\multiplyright{3}}=\frac{3}{6} \end{align*}

Note that \(\frac{1}{2}\cdot2=1\text{.}\) For \(\frac{\frac{1}{2}}{3}\text{,}\) to remove the fraction \(\frac{1}{2}\text{,}\) we multiply the numerator and denominator by \(2\text{,}\) and we have:

\begin{align*} \frac{\frac{1}{2}}{3}\amp=\frac{\frac{1}{2}\multiplyright{2}}{3\multiplyright{2}}\\ \amp=\frac{1}{6} \end{align*}

Compare the problem above with the following one:

\begin{align*} \frac{1}{\frac{2}{3}}\amp=\frac{{1}\multiplyright{3}}{\frac{2}{3}\multiplyright{3}}\\ \amp=\frac{3}{2} \end{align*}

So \(\frac{\frac{1}{2}}{3}\) and \(\frac{1}{\frac{2}{3}}\) have different values.

To remove multiple fractions in a complex fraction, we need to multiply the numerator and denominator by those fractions' common denominator, like in the next few examples.

Example13.4.2

Simplify \(\frac{\frac{1}{2}}{\frac{1}{3}}\)

Solution

We multiply the numerator and denominator by the common denominator of \(2\) and \(3\text{,}\) which is \(6\text{:}\)

\begin{align*} \frac{\frac{1}{2}}{\frac{1}{3}}\amp=\frac{\frac{1}{2}\multiplyright{6}}{\frac{1}{3}\multiplyright{6}}\\ \amp=\frac{3}{2} \end{align*}

Since the fraction line serves the same function as the division sign, we have the following shortcut when we multiply fractions:

\begin{align*} \frac{1}{2}\cdot{6}\amp=6\div2\cdot1=3\\ \frac{1}{3}\cdot{6}\amp=6\div3\cdot1=2 \end{align*}
Example13.4.3

Simplify \(\frac{\frac{1}{2}+\frac{1}{3}}{5}\)

Solution

We need to remove \(\frac{1}{2}\) and \(\frac{1}{3}\text{,}\) so we multiply the numerator and denominator by the common denominator of \(2\) and \(3\text{,}\) which is \(6\text{.}\) Note that we don't consider \(5\) when we calculate the common denominator, because \(5\) is not a fraction. The solution is:

\begin{align*} \frac{\frac{1}{2}+\frac{1}{3}}{5}\amp=\frac{\multiplyleft{6}(\frac{1}{2}+\frac{1}{3})}{\multiplyleft{6}5}\\ \amp=\frac{6\cdot\frac{1}{2}+6\cdot\frac{1}{3}}{30}\\ \amp=\frac{3+2}{30}\\ \amp=\frac{5}{30}\\ \amp=\frac{1}{6} \end{align*}

The same concept can be applied to fractions with variables, like in the next few examples.

Example13.4.4

Simplify \(\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}\)

Solution

We multiply the numerator and denominator by the common denominator of \(x\) and \(y\text{,}\) which is \(xy\text{:}\)

\begin{align*} \frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}\amp=\frac{\multiplyleft{xy}(\frac{1}{x}+\frac{1}{y})}{\multiplyleft{xy}(\frac{1}{x}-\frac{1}{y})}\\ \amp=\frac{xy\cdot\frac{1}{x}+xy\cdot\frac{1}{y}}{xy\cdot\frac{1}{x}-xy\cdot\frac{1}{y}}\\ \amp=\frac{y+x}{y-x} \end{align*}
Example13.4.5

Simplify \(\frac{\frac{1}{x+3}+\frac{1}{x-3}}{\frac{1}{x^2-9}-1}\)

Solution

First, we factor all denominators if possible:

\begin{equation*} \frac{\frac{1}{x+3}+\frac{1}{x-3}}{\frac{1}{x^2-9}-1}=\frac{\frac{1}{x+3}+\frac{1}{x-3}}{\frac{1}{(x+3)(x-3)}-1} \end{equation*}

Next, identify the common denominator of those three fractions, which is \((x+3)(x-3)\text{.}\) We multiply the numerator and denominator by the common denominator:

\begin{align*} \frac{\frac{1}{x+3}+\frac{1}{x-3}}{\frac{1}{x^2-9}-1}\amp=\frac{\frac{1}{x+3}+\frac{1}{x-3}}{\frac{1}{(x+3)(x-3)}-1}\\ \amp=\frac{\multiplyleft{(x+3)(x-3)}[\frac{1}{x+3}+\frac{1}{x-3}]}{\multiplyleft{(x+3)(x-3)}[\frac{1}{(x+3)(x-3)}-1]}\\ \amp=\frac{(x+3)(x-3)\cdot\frac{1}{x+3}+(x+3)(x-3)\cdot\frac{1}{x-3}}{(x+3)(x-3)\cdot\frac{1}{(x+3)(x-3)}-(x+3)(x-3)\cdot1}\\ \amp=\frac{(x-3)+(x+3)}{1-(x+3)(x-3)}\\ \amp=\frac{x-3+x+3}{1-(x^2-9)}\\ \amp=\frac{2x}{1-x^2+9}\\ \amp=\frac{2x}{10-x^2} \end{align*}

Subsection13.4.2Exercises

Simplifying Complex Fractions

1
2
3
4
5
6
7
8
9