Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐶}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section14.3Radical Expression Operations

In <<Unresolved xref, reference "section-simplifying-square-root"; check spelling or use "provisional" attribute>> and <<Unresolved xref, reference "section-square-root-operations"; check spelling or use "provisional" attribute>>, we learned square root operations. In this section, we will extend those concepts into root of other degrees, and learn how to handle radical expressions with variables.

Subsection14.3.1Simplifying Radical Expressions

Figure14.3.1Alternative Video Lesson

In <<Unresolved xref, reference "section-simplifying-square-root"; check spelling or use "provisional" attribute>>, we learned how to convert expressions like \(\sqrt{12}=2\sqrt{3}\text{.}\) In this subsection, we will use the same concept to simplify expressions like \(\sqrt[3]{16x^3}\text{.}\)

We learned this property for square root:

\begin{equation*} \sqrt{x^2}=x\quad\text{where }x\ge0 \end{equation*}

The condition \(x\ge0\) must be true because this property doesn't hold if \(x\lt0\text{.}\) For example: \(\sqrt{(-1)^2}=\sqrt{1}=1\text{,}\) where \(\sqrt{(-1)^2}\ne-1\text{.}\) We will use a different way to write this property:

\begin{equation*} \sqrt{x^2}=\abs{x} \end{equation*}

This new formula will take care of negative numbers, like in \(\sqrt{(-1)^2}=\abs{-1}\text{.}\)

We have learned

\begin{equation*} \sqrt[n]{x}=x^{\frac{1}{n}} \end{equation*}

and it's easy to see

\begin{align*} \sqrt{x^2}\amp=(x^2)^{\frac{1}{2}}\\ \amp=x^{2\cdot\frac{1}{2}}\\ \amp=\abs{x} \end{align*}

Similarly, we can show the following:

\begin{align*} \sqrt{x^2}\amp=\abs{x}\\ \sqrt[4]{x^4}\amp=\abs{x}\\ \sqrt[6]{x^6}\amp=\abs{x}\\ \quad\ldots\\ \sqrt[n]{x^n}\amp=\abs{x}\amp\text{where }n\text{ is even} \end{align*}

However, for \(\sqrt[3]{x^3}=x\text{,}\) there is no need for the absolute value symbol, because \(\sqrt[3]{1^3}=1\) and \(\sqrt[3]{(-1)^3}=-1\) do not cause confusions. The same is true for other odd-number-degree roots. In summary, we have:

\begin{align*} \sqrt[m]{x^m}\amp=x\amp\text{where }m\text{ is odd}\\ \sqrt[n]{x^n}\amp=\abs{x}\amp\text{where }n\text{ is even} \end{align*}

Let's look at a few examples on simplifying radicals.

Example14.3.2

Simplify \(\sqrt{y^2+2y+1}\text{.}\)

Solution

\begin{align*} \sqrt{y^2+2y+1}\amp=\sqrt{(y+1)^2}\\ \amp=\abs{y+1} \end{align*}

We used the property \(\sqrt[n]{x^n}=\abs{x}\text{ where }n\text{ is even}\text{.}\)

Example14.3.3

Simplify \(\sqrt{z^4}\text{.}\)

Solution

\begin{align*} \sqrt{z^4}\amp=\sqrt{z^2z^2}\\ \amp=\abs{z}\cdot\abs{z}\\ \amp=z^2 \end{align*}

In the last example, there is no need to write \(\sqrt{z^4}=\abs{z^2}\text{.}\) Because \(z^2\) is always positive or zero, the absolute value symbols are redundant.

In general, we have

\begin{equation*} \sqrt{x^{2m}}=\abs{x^m}\quad\text{for example: }\sqrt{x^{12}}=x^6 \end{equation*}

Note that \(\abs{x^6}\) is not necessary, because \(x^6\) is never negative. Similarly, we have:

\begin{align*} \sqrt[3]{x^{3m}}\amp=x^m\amp\text{for example: }\sqrt[3]{x^{12}}=x^4\\ \sqrt[4]{x^{4m}}\amp=\abs{x^m}\amp\text{for example: }\sqrt[4]{x^{12}}=\abs{x^3}\\ \ldots \end{align*}
Example14.3.4

Simplify \(\sqrt{72m^3n^5}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \sqrt{72m^3n^5}\amp=\sqrt{2^33^2m^3n^5}\\ \amp=\sqrt{2\cdot2^23^2m\cdot m^2\cdot n\cdot n^4}\\ \amp=2\cdot3\cdot mn^2\cdot\sqrt{2mn}\\ \amp=6mn^2\cdot\sqrt{2mn} \end{align*}

Since all variables are assumed positive, there is no need to use the absolute value symbols.

Example14.3.5

Simplify \(\sqrt[3]{16z^4}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \sqrt[3]{16z^4}\amp=\sqrt[3]{2^4z^4}\\ \amp=\sqrt[3]{2^3\cdot2\cdot z^3\cdot z}\\ \amp=2z\cdot\sqrt[3]{2z} \end{align*}

We used the property \(\sqrt[m]{x^m}=x\text{ where }m\text{ is odd}\text{.}\)

Remark14.3.6

Note that the "dot" (multiplication symbol) in \(2z\cdot\sqrt[3]{2z}\) is necessary. Otherwise it's difficult to tell between \(2z\cdot\sqrt[3]{2z}\) and \(2z^3\cdot\sqrt{2z}\text{.}\)

Example14.3.7

Simplify \(\sqrt[3]{54x^3y^5}\text{.}\)

Solution

\begin{align*} \sqrt[3]{54x^3y^5}\amp=\sqrt[3]{2\cdot3^3x^3y^3y^2}\\ \amp=3xy\cdot\sqrt[3]{2y^2} \end{align*}

Subsection14.3.2Exercises

Simplifying Radicals

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Subsection14.3.3Radical Operations

Figure14.3.8Alternative Video Lesson

In <<Unresolved xref, reference "section-square-root-operations"; check spelling or use "provisional" attribute>>, we learned how to add/subtract/multiply square root expressions. We will extend those concepts and simplify more complicated radical expressions.

In <<Unresolved xref, reference "theorem-square-root-property"; check spelling or use "provisional" attribute>>, we learned the properties:

\begin{align*} \sqrt{x\cdot y}\amp=\sqrt{x}\cdot\sqrt{y}\\ \sqrt{\frac{x}{y}}\amp=\frac{\sqrt{x}}{\sqrt{y}}, \text{ where }y\ne0 \end{align*}

Those properties also work for other radicals:

\begin{align*} \sqrt[n]{x\cdot y}\amp=\sqrt[n]{x}\cdot\sqrt[n]{y}\\ \sqrt[n]{\frac{x}{y}}\amp=\frac{\sqrt[n]{x}}{\sqrt[n]{y}}, \text{ where }y\ne0 \end{align*}

The next few examples will use those properties.

Example14.3.9

Do multiplication: \(\sqrt[3]{4x^2y}\cdot2\cdot\sqrt[3]{4xy^2}\)

Solution

\begin{align*} \sqrt[3]{4x^2y}\cdot2\cdot\sqrt[3]{4xy^2}\amp=2\cdot\sqrt[3]{4x^2y\cdot4xy^2}\\ \amp=2\cdot\sqrt[3]{2^2x^2y\cdot2^2xy^2}\\ \amp=2\cdot\sqrt[3]{2^3\cdot2x^3y^3}\\ \amp=2\cdot2xy\cdot\sqrt[3]{2}\\ \amp=4xy\cdot\sqrt[3]{2} \end{align*}
Example14.3.10

Do multiplication: \(\sqrt{2p^2-p-1}\cdot\sqrt{p^2-1}\)

Solution

\begin{align*} \sqrt{2p^2-p-1}\cdot\sqrt{p^2-1}\amp=\sqrt{(2p+1)(p-1)}\cdot\sqrt{(p+1)(p-1)}\\ \amp=\sqrt{(2p+1)(p-1)(p+1)(p-1)}\\ \amp=\abs{p-1}\sqrt{(2p+1)(p+1)} \end{align*}
Example14.3.11

Do division: \(\frac{\sqrt[4]{32m^6n^{10}}}{\sqrt[4]{162m^{10}n}}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \frac{\sqrt[4]{32m^6n^{10}}}{\sqrt[4]{162m^{10}n}}\amp=\sqrt[4]{\frac{32m^6n^{10}}{162m^{10}n}}\\ \amp=\sqrt[4]{\frac{16n^9}{81m^4}}\\ \amp=\sqrt[4]{\frac{2^4n^9}{3^4m^4}}\\ \amp=\frac{2n^2\cdot\sqrt[4]{n}}{3m} \end{align*}

When we add/subtract radical expressions, remember we can only combine like terms.

Example14.3.12

Simplify \(\sqrt{8t}+\sqrt[3]{8t}+\sqrt{18t}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \sqrt{8t}+\sqrt[3]{16t}+\sqrt{18t}\amp=\sqrt{2^3t}+\sqrt[3]{2^4t}+\sqrt{2\cdot3^2t}\\ \amp=2\sqrt{2t}+2\cdot\sqrt[3]{2t}+3\sqrt{2t}\\ \amp=5\sqrt{2t}+2\cdot\sqrt[3]{2t} \end{align*}

Note that \(\sqrt{2t}\) and \(\sqrt[3]{2t}\) are not like terms.

Example14.3.13

Simplify \(\sqrt[3]{375n^{12}x^9}-\sqrt[3]{192n^{12}x^9}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \sqrt[3]{375n^{12}x^9}-\sqrt[3]{192n^{12}x^9}\amp=\sqrt[3]{3\cdot5^3n^{12}x^9}-\sqrt[3]{2^6 3n^{12}x^9}\\ \amp=5n^4x^3\cdot\sqrt[3]{3}-2^2n^4x^3\cdot\sqrt[3]{3}\\ \amp=5n^4x^3\cdot\sqrt[3]{3}-4n^4x^3\cdot\sqrt[3]{3}\\ \amp=n^4x^3\cdot\sqrt[3]{3} \end{align*}

When we add/subtract fractions, don't forget to find common denominators first.

Example14.3.14

Simplify \(\sqrt{\frac{3}{4}}+\sqrt{12}\text{.}\) Assume all variables are positive.

Solution

\begin{align*} \sqrt{\frac{3}{4}}+\sqrt{12}\amp=\frac{\sqrt{3}}{\sqrt{4}}+\sqrt{2^2\cdot3}\\ \amp=\frac{\sqrt{3}}{2}+2\sqrt{3}\\ \amp=\frac{\sqrt{3}}{2}+\frac{2\sqrt{3}}{1}\\ \amp=\frac{\sqrt{3}}{2}+\frac{\multiplyleft{2}2\sqrt{3}}{\multiplyleft{2}1}\\ \amp=\frac{\sqrt{3}}{2}+\frac{4\sqrt{3}}{2}\\ \amp=\frac{\sqrt{3}+4\sqrt{3}}{2}\\ \amp=\frac{5\sqrt{3}}{2} \end{align*}

It's important to review radical operations covered in Subsection 8.2.7.

Subsection14.3.4Exercises

Multiplying/Dividing Radicals

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Mixed Operations of Radicals

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57