Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐶}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

SectionB.6Perimeter and Area of Other Shapes

In many situations, we have to handle shapes consisting of various basic shapes we saw earlier. We will learn how to find perimeter and area of such shapes.

ExampleB.6.1

Find the perimeter and area of the following shape.

<<SVG image is unavailable, or your browser cannot render it>>

FigureB.6.2A Rectangle with a Missing Piece
Solution

To find this shape's perimeter, we must find the missing length of those two segments. We can do that simply by subtraction:

<<SVG image is unavailable, or your browser cannot render it>>

FigureB.6.3Calculating Lengths of Missing Segments

Now we can calculate the perimeter. We will start from the top right corner, walking down and around the shape while adding up the distance traveled:

\begin{equation*} \text{perimeter}=6\text{ ft}+10\text{ ft}+2\text{ ft}+3\text{ ft}+4\text{ ft}+7\text{ ft}=32\text{ ft} \end{equation*}

There are two methods to calculate this shape's area. Let's look at the next figure:

<<SVG image is unavailable, or your browser cannot render it>>

FigureB.6.4Calculating the Shape's Area

The first method is to add up those two blue rectangle's area:

\begin{equation*} \text{area}=20\text{ ft}^2+28\text{ ft}^2=48\text{ ft}^2 \end{equation*}

The second method is to calculate the big \(10\times6\) rectangle's area (\(60\text{ ft}^2\)), and then subtract the missing rectangle's area:

\begin{equation*} \text{area}=60\text{ ft}^2-12\text{ ft}^2=48\text{ ft}^2 \end{equation*}
ExerciseB.6.5