Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{\highlight{#1}} \newcommand{\addright}[1]{\highlight{{}+#1}} \newcommand{\addleft}[1]{\highlight{#1+{}}} \newcommand{\subtractright}[1]{\highlight{{}-#1}} \newcommand{\multiplyright}[2][\cdot]{\highlight{{}#1#2}} \newcommand{\multiplyleft}[2][\cdot]{\highlight{#2#1{}}} \newcommand{\divideunder}[2]{\frac{#1}{\highlight{#2}}} \newcommand{\divideright}[1]{\highlight{{}\div#1}} \newcommand{\apple}{\text{๐ŸŽ}} \newcommand{\banana}{\text{๐ŸŒ}} \newcommand{\pear}{\text{๐Ÿ}} \newcommand{\cat}{\text{๐Ÿฑ}} \newcommand{\dog}{\text{๐Ÿถ}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

SectionB.2Parallelogram

<<SVG image is unavailable, or your browser cannot render it>>

FigureB.2.1Parallelogram

The shape in Figureย B.2.1 is called a parallelogram. It is a quadrilateral (\(4\)-sided polygon) with two pairs of parallel sides, and each side has the same dimension as its opposite side. Note that any rectangle is a special parallelogram with \(4\) right angles.

We can easily calculate a parallelogram's perimeter:

\begin{equation*} \text{parallelogram perimeter}=2(3\text{ cm}+1.7\text{ cm})=9.4\text{ cm} \end{equation*}

To calculate a parallelogram's area, let's look at this figure:

<<SVG image is unavailable, or your browser cannot render it>>

FigureB.2.2Parallelogram's Area

Once we move the right triangle from the right side to the left side, a parallelogram can be turned into a rectangle with the same area. Thus, a paralleogram's area can be calculated by a rectangle's area formula:

\begin{equation*} \text{Parallelogram Area}=bh \end{equation*}

where \(b\) stands for the parallelogram's base and \(h\) for its height.

ExerciseB.2.3